HW2 is due Sep.14 (TOMORROW)!
Your first test is on Sep.20 1PM - Sep.21 11.59PM.
There will be a lab review session on Sep.20 11.30AM-12.45PM AT BALLANTINE HALL 346
NO CLASS WITH PROF. SCHULTZ, BUT A LAB REVIEW SESSION WITH ME
Data frame is a collection of variables
Each column represents a variable
Each row represents one observation
Download smdata.Rda from the “Lab Materials” folder on Canvas
Load the data into R:
load('smdata.Rda') ## Remember that your dataset should be in the same working directory as your R working directory (to check it, go to the Lab 2 materials)Type command as follows:
The data would be displayed as a spreadsheet, similar to Excel spreadsheet
And you can see in your environment panel that smdata has 2809 observations and 9 variables:
How to understand what the data frame tells you?
| AGE | SNAPCHAT | INSTAGRM | TUMBLR | AGE2 | SM | ||||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 40 | NA | NA | NA | NA | NA | NA | 35-54 | |
| 2 | 60 | NO | NO | NO | NO | NO | NO | 55+ | Neither one | 
| 3 | 70 | NO | NO | NO | NO | NO | NO | 55+ | Neither one | 
| 4 | 40 | NA | NA | NA | NA | NA | NA | 35-54 | |
| 6 | 50 | NO | YES | NO | NO | NO | NO | 35-54 | Neither one | 
| 7 | 50 | NA | NA | NA | NA | NA | NA | 35-54 | 
For example, the second row represents one observation, and this person is 60 y.o., doesn’t use Instagram, Facebook, Twitter, WhatsApp, etc.
Each column represents one variable that varies across observations (in this case, person).
The value of NA represents missing data (i.e. there is
no information for the person’s use of Snapchat or any other variable
with NA)
When we apply the summary() command on the data frame, we get the summary for all the variables in the data frame.
##       AGE         SNAPCHAT           INSTAGRM           FACEBOOK        
##  Min.   :10.0   Length:2809        Length:2809        Length:2809       
##  1st Qu.:30.0   Class :character   Class :character   Class :character  
##  Median :40.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :44.5                                                           
##  3rd Qu.:60.0                                                           
##  Max.   :80.0                                                           
##    TWITTER             TUMBLR            WHATSAPP             AGE2          
##  Length:2809        Length:2809        Length:2809        Length:2809       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##       SM           
##  Length:2809       
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
If you put down an R object which is a vector within the parentheses, this function outputs the 5-number summary and the mean
If you put down an R object which is a data frame within the parentheses, this function outputs 5-number summary and the mean for all continuous variables and the number of observations for all categorical variables.
What if you want to obtain the summary statistics of only one variable?
Let’s look up the summary statistics for the AGE:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    10.0    30.0    40.0    44.5    60.0    80.0
Please, load gss.Rda dataset into R and answer the following questions:
How many observations are there?
How many variables are there?
Run the summary command for the variable called age. What are the results (i.e. five-number summary and the mean)?
We learned how to summarize a quantitative (continuous) variable by obtaining the five-number summary and the mean.
How about qualitative (categorical) variable?
We can use table() command to show the distribution of a
categorical variable:
## 
##   NO  YES 
## 1037  308
Try to obtain the table for the variable AGE2 in smdata.
What are the numbers of people in each age group?
Try to obtain the table for the variable AGE2 in smdata.
What are the numbers of people in each age group?
## 
## 18-34 35-54   55+ 
##   737   970  1102
What if you want to make a table in proportions?
To do it we need sum() function!
In R you can combine functions together:
table(smdata$AGE2) gives you the number of
observationssum(table(smdata$AGE2)) gives you total number of
observations## 
##     18-34     35-54       55+ 
## 0.2623710 0.3453186 0.3923104
We can also make a bivariate table (cross-table of two variables)
For example, you want to see the number of people who use Snapchat by age group:
##      
##       18-34 35-54 55+
##   NO    237   443 357
##   YES   216    74  18
Your turn: What are the numbers of people who use Twitter by age group?
Your turn: What are the numbers of people who use Twitter by age group?
##      
##       18-34 35-54 55+
##   NO    321   428 344
##   YES   132    89  31
There is missing data in the variable SNAPCHAT
How does the table() command treat missing data?
## 
##   NO  YES 
## 1037  308
Count the number of observations in the variable above and compare it with the total number of observations (hint: look at the environment panel to look up the total number of observations).
There is missing data in the variable SNAPCHAT
How does the table() command treat missing data?
## 
##   NO  YES 
## 1037  308
Count the number of observations in the variable above and compare it with the total number of observations (hint: look at the environment panel to look up the total number of observations).
Total number of observations in 2809 and number of observations in the table command is 1345 (1037+308). Therefore, there is
## [1] 1464
is.na() commandis.na() command creates a vector of logicals with the
same number of total observations as the original variable.
– Vector of logicals: takes on two values (TRUE/FALSE) and has the same number of observation displayed in the environment window.
TRUE: observation is missing
FALSE: observation is not missing
head(is.na(smdata$SNAPCHAT)) #head() function shows you the first six observations in the vector or dataframe (to save the space)## [1]  TRUE FALSE FALSE  TRUE FALSE  TRUE
R object: it is the thing that you can store in your current R working environment (note: all R objects will be gone once you close RStudio)
You can store almost anything in R as an object:
• A number
• Characters
• A vector (a list of numbers/a list of characters)
• Logicals (TRUE/FALSE)
• Data frame (kind of like an Excel spreadsheet with numbers stored in columns and rows)
• and many others…
is.na() commandBut how do you know how many missing values are there????????!!?!??!!?!?
You can count manually…but…
##    [1]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##   [13] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##   [25]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##   [37] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [49] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [61]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [73]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##   [85] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE
##   [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [109]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [133]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [145]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
##  [157]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [169] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [181] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [193]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [205]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [217]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [229] FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [241]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [253]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [265] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [277]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [289] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [301]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [313] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [325]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [337] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [349] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [361] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [373]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [385] FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE
##  [397] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [409]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [433] FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [445]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [457] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##  [469] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [481]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [493]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [505]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [517]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [529]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [541]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [553] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [565]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
##  [577]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [589]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [601] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [613] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [625] FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [637]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [649]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [661] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [673]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [685]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [697]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [709]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [721]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [733]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [745]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
##  [757] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [769]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [781]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [793] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [805]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [817] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [829]  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [841]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [853] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
##  [865]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##  [877]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [889] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [901]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [913] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [925] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
##  [937]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [949]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [961]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [973]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [985]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [997] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1009]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [1021] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [1033]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
## [1045]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1057]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1069]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE
## [1081]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
## [1093] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1105] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1117]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [1129] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [1141] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1153]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [1165] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1177]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [1189] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1201]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [1213] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [1225]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1237]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1249] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1261] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1273]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1285]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
## [1297]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [1309] FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1321]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [1333]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1345]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1357] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1369]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1381] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1393]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [1405]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [1417] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [1429]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [1441]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [1453] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1465] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [1477]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [1489] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [1501]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [1513] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1525]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1537]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1549] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [1561]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1573] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE
## [1585]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [1597] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [1609]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [1621] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [1633]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1645]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1657] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1669] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [1681] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
## [1693]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1705]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1717] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [1729] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1741] FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1753]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1765]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1777]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1789] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [1801]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1813]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1825]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1837] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [1849]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [1861] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1873]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1885] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1897] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## [1909] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [1921] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [1933] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [1945]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [1957]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [1969]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1981] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1993]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [2005]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [2017]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [2029]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
## [2041]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [2053] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [2065]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [2077] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [2089] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [2101] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [2113] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [2125] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2137]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [2149] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
## [2161]  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [2173]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [2185] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [2197] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [2209]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2221] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2233]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [2245]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [2257] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2269]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [2281]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [2293] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [2305]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [2317] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [2329]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [2341]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [2353]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [2365]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [2377]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [2389] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [2401] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [2413] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
## [2425]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [2437]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2449]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [2461] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [2473]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [2485]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [2497] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [2509]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
## [2521] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2533] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2545]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [2557]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2569] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [2581] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2593]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [2605]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [2617] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
## [2629]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [2641] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [2653]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [2665]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2677] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [2689] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2701] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2713]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
## [2725]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [2737]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2749]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2761] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [2773] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2785] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [2797]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2809] FALSE
is.na() commandBut how do you know how many missing values are there????????!!?!??!!?!?
You can count manually…but…don’t do it!!
Just make a table!
## 
## FALSE  TRUE 
##  1345  1464
There are two parts:
Part1: Question 1-6 Part2 (R part): Question 7-8
I will walk through question 7 and 8 with you today.
If you have questions about Part 1, feel free to ask me after the end of the lab.
You don’t need to load data frame in HW2.
par() function: this line sets the parameters so that
the graphs generated by codes after this line will be arranged
horizontally (exactly three graphs line up horizontally)
rnorm() function: generates 10,000 observations with
mean 10 and standard deviation of 2 at random, based on normal
distribution.
You need to describe what does line of code below the #ADD COMMENT HERE:
Hint: run line starting with plot()... and then
describe the output/graph generated by this line.
You have to do the same for the following lines.
rchisq() function: generates 10,000 observations with 10
degrees of freedom, and non-centrality parameter of 1 at random, based
on a chi-square distribution (we will cover what a chi-square
distribution is later in the class)
Hint: refer to Lab 3 slides. We have gone through these functions in Lab 3
#######################################################
# Part 2
#######################################################
# ADD COMMENT HERE
mean(x)
# ADD COMMENT HERE
sd(x)
# ADD COMMENT HERE
quantile(x,c(.0015,.025,.16,1-.16,1-.025,1-.0015))
# ADD COMMENT HERE
mean(y)
# ADD COMMENT HERE
sd(y)
# ADD COMMENT HERE
quantile(y,c(.0015,.025,.16,1-.16,1-.025,1-.0015))In a few sentences, describe the distributions of x and y. (2 points)
Hint: you need to describe if the distributions are skewed, normal, spread, etc.
Comment in R
Imagine you have written codes in R for the final project a week before the deadline
How do you know what you were doing with the codes in R when you are writing the report the day before the deadline?
Comments going along with the code in R can help you
Whenever a line starts with a hashtag (#), R would skip that line
So we can use this property to add notes for us to read later